ESTIMATION AND CORRECTION OF SYSTEMATIC MODEL ERRORS IN GFS

NGGPS PI Meeting August 7, 2018 Kriti Bhargava (student), Eugenia Kalnay, Jim Carton

Acknowledgements: Dr. Fanglin Yang (NCEP), Dr. Jim Jung, Dr. Mark Iredell, Dr. Sreenivas Moorthi, and Dr. Daryl Kleist

Goals

- (i) Estimate the model deficiencies in the GFS that lead to systematic forecast errors
- (ii) Implement an online correction (i.e., within the model) scheme to correct GFS
 - following the methodology of Danforth and Kalnay, 2008.
- (iii) Provide guidance to optimize design of subgrid-scale physical parameterizations.
 - The empirical correction scheme can then be replaced by these.

Motivation

SYSTEMATIC FORECAST ERROR IN GFS

SYSTEMATIC MODEL ERRORS

Systematic Forecast Errors in GFS

• Systematic forecast errors are a significant portion of the total forecast error in weather prediction models, such as the Global Forecast System (GFS).

Figure 1. Zonal mean RMS systematic error (left) and total error (right) in temperature after 16 days. The range of temperature systematic errors is $\sim 1/3$ of total temperature error range after 2 weeks. (Courtesy of Dr. Glenn White).

Past Studies

CORRECTION SCHEMES

Correction Schemes

OFFLINE CORRECTION SCHEME

- Apply a statistical correction for each forecast length after the forecast is completed
- Allow forecast errors to grow until the end of the forecast cycle
- Physical origin obscured as errors grow non-linearly after short time

ONLINE CORRECTION SCHEME

- Estimate and correct the bias during the model integration
- Continuously corrected forecasts at all lead times
- Reduces non linear error growth of bias
- Large forcing might disturb physical balance of model variables

Previous studies ... (Danforth & Kalnay 2007, 2008ab)

Methods Used

• <u>Time averaged analysis correction</u>: the average correction that the observations make on the 6hr forecast

$$\dot{x}(t) = M[x(t)] + \frac{\delta x_6^{ai}}{6 hr}$$

- <u>Periodic component correction (diurnal correction)</u>: linearly interpolated leading EOFs (low dimension approach)
- <u>State dependent correction:</u> introduced new method using SVD of coupled analysis correction and forecast state anomalies (low dimension approach)

Results

- Online correction performance was slightly better than the operational statistical method applied a posteriori
- Correcting bias reduced random errors

Proposed Method for GFS

ESTIMATE MODEL DEFICIENCIES IN GFS WITH AN. INCREMENTS CORRECT GFS ONLINE FOR MODEL DEFICIENCIES

Estimation of model deficiencies

- Model biases are estimated from the time average of the 6-hr analysis increments (AIs)
- AIs are the difference between the gridded analysis and forecast: the corrections that the observations make on the 6-hr forecasts

$$\delta x_{ai}^6 = x_a^6 - x_f^6$$

Time mean

• Estimate seasonal model bias as the seasonal average (DJF, MAM, JJA, and SON) of the AIs for surface pressure, temperature, winds and specific humidity during the five years 2012-2016

Periodic Component: periodic AIs at sub-monthly scales

- First calculate the anomalies of the 6-hourly AIs with respect to their monthly averages
- Decompose these anomalies into a complete set of 120 Empirical Orthogonal Functions (EOFs) and corresponding principal component time series

Correcting GFS online for model deficiencies

• Plan to follow the methods comprehensively developed by Danforth and Kalnay [DKM07; Danforth and Kalnay, 2008(GRL) and Danforth and Kalnay, 2008(JAS)]

$$\dot{x}(t) = \mathbf{M}[\mathbf{x}(t)] + \frac{\delta x_{ai}^6}{6 - hr}$$

• Correcting diurnal and semi-diurnal bias using low dimensional estimate

$$\sum_{l=1}^{N} \boldsymbol{\beta}_{l}(t) \boldsymbol{e}_{l}$$

- e_l : leading EOFs from the anomalous error field (time independent term)
- β_l : time dependent amplitude, estimated by averaging over the daily cycle in the training period
- N : number of leading EOFs

Estimation Results

SEASONAL BIAS ESTIMATION

PERIODIC BIAS ESTIMATION

Seasonal Bias Estimation

- Significant biases that are **geographically anchored** with **continental scales** in the GFS.
- Despite major changes made to the data assimilation scheme in May 2012, the <u>bias</u> <u>corrections retain</u> <u>their major features</u> <u>throughout 2012 to</u> <u>2014</u>

JJA mean 6-hr Analysis Increment at ~850mb

Seasonal Bias Estimation ...

- Amplitude of the bias declines in 2015, especially over the ocean
- In north, the reduction might be due to change in the SST boundary condition
- In south, the reduction in bias is due to updating of the Community Radiative Transfer Model and improvements in radiance assimilation
- Bias represented by AIs over oceans in 2012-2014 also arise from bias in prescribed SSTs

Change in surface air temperature mean bias, June 2014 (a) - June 2015(b) and the difference in RTG and OI SST (c).

Periodic Bias Estimation

Large **diurnal component** moves westward following the motion of the Sun. Also a significant **semi-diurnal signal**

Amplitude comparable to the seasonal bias, thus making correction of diurnal and semidiurnal bias also critical

JJA 2014 mean 6-hr Al at ~ 850 mb

Periodic Bias Estimation: EOF Analysis

Periodic Bias Estimation: EOF Analysis

The errors in diurnal cycle represented with the first four modes are almost indistinguishable when compared with all (120) modes

Utilize the past estimates to correct present models : Preliminary application

- **Training period** : past 21 days moving
- **Spatial resolution :** T670L64 **Temporal resolution**: Output every 6 hours until 5-day forecast.
- Forecasts initialized every 6 hours from June 1, 2015 to June 7, 2015 using the analysis from the control run.
- Corrections applied for Ps, Q, T, U and V.

Online Correction Results

ONLINE CORRECTION METHOD

GLOBAL AVERAGE RESULTS

Average 6-hr AIs for Temperature (K) Lead time: 6hrs ~ 850 mb

- There's a significant bias reduction over the continents.
- Improvement achieved is almost as strong as the correction applied over the 6 hours.
- Validates the linear error growth in initial 6 hours.

(b) AI for the control experiment

(c) Average correction applied

(d) Improvement achieved (b)-(a)

Global Average Mean Square Systematic Geotoarl Average Mean Square Systematic error

Random errors mostly stay the same, increasing slightly at some places.

Proposed Future Work

WORK PLAN

Proposed Future Work

Apply Online Correction

- Correct periodic bias (diurnal and semidiurnal errors)
- Apply the same correction scheme to CFS

After Online Correction

- Compare forecast bias improvement with statistical bias correction made *a posteriori*.
- Check whether reducing the mean and periodic bias also reduces forecast random errors during their nonlinear growth.
- Apply this method to FV3 to provide simple verification tool to optimizing physical parameterizations
- Work with EMC scientists on using the Analysis Increments as an efficient tool to facilitate testing impacts of new parameterizations on FV3.

Summary

Estimation of model deficiencies

- Estimated model deficiencies in the GFS using 6-hr Analysis Increments are robust and can be used for online correction.
- Periodic errors are dominated by diurnal and semi-diurnal cycles.
- Errors in the diurnal cycle can be represented using only 4 leading EOF modes.

Adaptive Online Correction

- This scheme is remarkably stable, the added forcing never lead to model blow up.
- The correction reduced the estimated errors of the thermodynamic variables (T and Q) by about 20% at low levels.
- For U and V, results show a reduction of errors, but very small, of only a few percent.
- Random errors stay more or less the same.

Summary

Estimation of model deficiencies

- Estimated model deficiencies in the GFS using 6-hr Analysis Increments are robust and can be used for online correction.
- Periodic errors are dominated by diurnal and semi-diurnal cycles.
- Errors in the diurnal cycle can be represented using only 4 leading EOF modes.

Adaptive Online Correction

- This scheme is remarkably stable, the added forcing never lead to model blow up.
- The correction reduced the estimated errors of the thermodynamic variables (T and Q) by about 20% at low levels.
- For U and V, results show a reduction of errors, but very small, of only a few percent.
- Random errors stay more or less the same.

Characterizing model error (after Danforth and Kalnay, 2008)

Our goal is to estimate the three components of the systematic error

